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Abstract-A separation of variables solution has been obtained for transient radiative cooling of an 
absorbing-scattering plane layer. The solution applies after an initial transient period required for adjust- 
ment of the temperature and scattering source function distributions. The layer emittance, equal to the 
instantaneous heat loss divided by the fourth power of the instantaneous mean temperature, becomes 
constant. This emittance is a function of only the optical thickness of the layer and the scattering 
albedo ; its behavior as a function of these quantities is considerably different than for a layer at constant 

temperature. 

INTRODUCTION 

THE PURPOSE of this paper is to derive a separation of 
variables type of solution that arises in the transient 
radiative cooling of a layer of absorbing and scattering 
material. The radiative cooling of the layer is governed 
by a transient non-linear integro-differential equation. 
The solution yields a constant layer emittance based 
on the instantaneous heat loss and the instantaneous 
mean temperature of the layer. The emittance is con- 
stant even though the heat loss and mean temperature 
are both changing with time. 

The present study arose in connection with an 
analysis [I] of the radiative cooling of a layer filled 
with hot liquid droplets. The use of multiple liquid 
droplet streams passing in a directed manner through 
space, has been proposed as a waste heat dissipation 
technique for an orbiting space power plant [2]. 
Detailed discussions of the system components and 
the system optimization are given in refs. [3,4]. The 
droplet layer may consist of many thousands of indi- 
vidual streams with possible droplet diameters being 
50-200 pm. An analysis of the transient cooling of the 
droplet layer was carried out in detail in ref. [l] by 
treating the layer as an absorbing, emitting and scat- 
tering medium. The transient energy equation of radi- 
ative transfer was solved numerically. This expanded 
on previous work such as refs. [2,5-71. Additional 
general information on transient radiative cooling is 
given in refs. [8,9]. During the transient solution in 
ref. [l], an instantaneous emittance was calculated by 
dividing the instantaneous heat loss from one side of 
the layer by the fourth power of the mean temperature 
of the layer. The cooling started from a constant initial 
temperature across the layer. During the cooling, a 
temperature distribution develops and then dimin- 
ishes in amplitude as energy is lost; typical tem- 
perature distributions are given in refs. [l, 61. It was 

found that, after the layer had lost approximately 
30% of its energy (see ref. [l] for more precise results), 
the emittance became a constant that depended only 
on the optical thickness and scattering albedo of the 
layer. 

Initially the layer has an emittance corresponding 
to the initial uniform temperature distribution. As the 
transient proceeds, the emittance decreases since the 
outer regions of the layer become cool relative to 
the mean temperature. For each set of parameters, 
the emittance leveled out at a constant value below the 
initial emittance. An examination of the transient dis- 
tributions in temperature and the one-fourth power 
of the source function showed that they had certain 
time-independent characteristics. These findings indi- 
cated that a solution could be found in the form given 
in this paper. The results yield a simple cooling 
relation that applies following the initial transient 
period. 

ANALYSIS 

The concept of the liquid-drop radiator for dis- 
sipation of waste heat for space applications is shown 
schematically in Fig. 1. The droplet-filled layer of 
thickness D is moving at uniform velocity G as it cools 
by radiation. Instead of calculating the heat transfer 
behavior as a function of distance z, a transformation 
is used in terms of the time after initial exposure to 
the cold environment, z = z/ii. The analysis can then 
be carried out as the transient cooling of a plane layer 
exposed to an environment at T, = 0. The radiative 
properties are assumed gray, which is a reasonable 
approximation for the droplet material properties 
shown in ref. [3] for the infra-red region. Isotropic 
scattering is used ; this should yield satisfactory results 
as shown in ref. [lo], where the effect of anisotropic 
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NOMENCLATURE 

a absorption coefficient of absorbing- 
scattering layer 

5 specific heat of absorbing-scattering 
droplet-filled layer 

D thickness of absorbing-scattering layer 
E,, E2 exponential integral functions, 

s 
‘fin-‘exp(-x/p)dp E,(x) = 

0 

at any time during cooling transient, 

Fln,r, 
u velocity through space of the droplet- 

filled layer 

x, z coordinates across and along the layer 
x dimensionless variable, x/D 
X* dummy variable of integration. 

F(X) function of X in temperature profile 
Greek symbols 

F, integrated mean value of F(x) 
a,,, steady value of layer emittance (based on 

G(X) function of X in profile of 1”‘/4 
instantaneous value of T,,,) achieved 

f(x) 
g(x) 
I 

4 

41 
T 

T, 

r, 

T, 

universal temperature distribution 
universal distribution of 1”“ 
source function in absorbing-scattering 
layer; f= nZ/oT: 

heat loss per unit area and time from one 
side of the radiating layer 
radiative heat flow per unit area and time 
absolute temperature, ?T, 

temperature of surrounding environment 
initial temperature of radiating layer 
integrated mean temperature across layer 

after initial transient 
K optical coordinate, (a + 0,)x ; K~ optical 

thickness of layer, (a + a,)D 

K* dummy variable of integration 

P density of droplet-filled layer 
0 Stefan-Boltzmann constant 

0s scattering coefficient of droplet-filled 
layer 

z time from start of cooling, 
f/(4aT;/pc,D) 

n albedo for scattering, o,/ (a + a,). 

T,*O (rT4(~, T) 

,r DROPLET 
I(K,T) = (I-fi)----- 

/' GENERATOR q 
,- DROPLET- 7c 

I' FILLED LAYER 

+; 
s 

‘;~I(K*,r)E,(,K--IC*()dK*. (3) 
0 

By eliminating the radiative flux qr and placing the 
results in dimensionless form, the equations become 

T,* 0 f(X,f) = (I-!a)FT"(X,f) 

FIG. 1. Geometry of radiating layer filled with hot droplets. 

scattering was examined for a cloud of particles and 
compared with isotropic results. 

The basic equations for transient cooling by radi- 
ation of an absorbing-scattering layer are given by 
the energy equation 

&a~ aqr _= -- 
a+a, a7 aK 

T(K,T=O)=T, (1) 

and the relations for the radiative flux derivative and 
the source function 

s kD 

z(K*,T)E,(jK-K*I)dK*-44Xz(K,T) 
cl 

(2) 

1 

I"(X*,F)E,(K~JX-A'*)) dX* (4a) 

aF 
-_=K 

ai 
D Qg) [F(X, f)- P(X, f)]. (4b) 

The previous transient numerical solution [l] 
revealed that both the temperature distribution and 
the distribution of the source function to the one- 
quarter power, adjusted to shapes that became inde- 
pendent of time so that 

T(K, T) - T(o, .t) 
WD/~,T) - WA 7) =f G-1 (54 

f’4(K,T)--11’4(o, 5) 
1”4(KD/2,T)--I’r4(0,T) 

= .4(X). (5b) 
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Then 

T(& r)/ T(O, r) = 1+ { [T(K,/2,7> 

- WA 7)li m, 7MYX) 

and similarly for Z’/“(K,T). A further examination 
of the transient numerical solution showed that, 
after an initial transient period, the quantity 
[T(K,/~, 7) - T(O,z)]/ T(0, r) becomes constant, and 
the similar quantity for 1’j4 is also a constant. 

The previous results lead to the idea of trying to 
obtain a solution to equations (4a) and (4b) in the 
separated form 

F(:cx, 3 = Qo, ?)F(X) (6a) 

71’4(X, 3 = F(O, qG(X). (6b) 

If the equations can be satisfied, this will be a valid 
solution. Substituting equations (6a) and (6b) into 
equations (4a) and (4b) gives 

G4(X) = (1 -Q)F4(X)+ y 

s 

1 

X G4(X*)E,(rc,]X-X*]) dX* (7a) 
0 

1 dF(O, ?) (1 -a) G4(X)-p(X) 

P(o,qT=KD n F(x) . 
C’b) 

In equation (7b) the variables in f and X have been 
separated; hence, if the proposed solution is valid, 
each side of this equation must be a constant. Then 
the function of X on the right-hand side of equation 
(7b) can be replaced by the value at any X. Since 
F(0) = 1, it is convenient to use the relation that 

[G4(w-F4(X)]/F(X) = G4(0)-1. 

This is rearranged into the form 

F4(X) = G4(X)+ [1 -G4(0)]F(X). (8) 

As described later, this was solved simultaneously 
with equation (7a) to obtain &Y) and G(X). 

The mean temperature of the layer at any time is 

Then 

= F(O,t)F,. 

(9) 

A heat balance on the layer gives 

dTm(z) 2q = ~E,,~c~-:(T) = -pcpD7 

where E,,, is the steady value of emittance that is 
achieved based on the instantaneous mean tempera- 
ture. In dimensionless form this becomes 

By combining equations (10) and (9) to eliminate F,,, 
and then using equations (7b) and (8), the emittance 
is obtained in terms of F and G 

hn,s = - ;; -[I-G4(0)]. (11) 

After F(X) and G(X) are obtained, the universal 
profiles@) and g(X) can be obtained by combining 
equations (5) and (6) to obtain 

F(x) -F(O) 
f(x? = F(l/2)-F(0) 

G(X) - G(0) 
g(x) = G( 1/2)-G(O) 

(124 

Wb) 

Equations (7a) and (8) are not convenient to solve 
for F(x) when there is only absorption in the layer, 
0 = 0. In this instance, I”(rc, 7) = ~(K,T), and the 
original equations (lH3) reduce to 

X s ~4(4(X*,~E,(KDIX-X*))dX* (13) 
0 ! 

Equation (6a) is substituted for F to yield 

1 dF(O, ?) 

T4(0,f) dQ 

x ‘~(X*)E,(ic,,X-Xx*]) dX* (14) 
5 0 > 

Since the variables are separated, each side of equation 
(14) must be a constant. This is conveniently evaluated 
by using the right-hand side and letting X = 0 (note 
that F(0) = 1). Then this constant is equated to the 
right-hand side of equation (14) and the result 
rearranged into the integral equation that was solved 
numerically for F(x) 

+-“2” I 
I 

F~(X*)E,(K~IX--*I)~X*. (15) 
0 

From equations (9) and (lo), the left-hand side of 
equation (14) is equal to -F:E,,,,/~. This is then 
equated to the right-hand side of equation (14) evalu- 
ated at X = 0 to yield an equation for E,,, that is 
evaluated after F(x) is obtained from equation (15) 

'F‘+(X*)E&,IO-X*1) dX* 

(16) 
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Equations (7a) and (8) were solved numerically to 
yield F(X) and G(x). The first several cases were 
solved using F(X) = 1 and G(X) = 1 as initial guesses. 
The initial functions were inserted into the right-hand 
side of equation (7a). The difference between the right- 
hand side and trial G4(X) was multiplied by an accel- 
eration factor (usually 1.2) and the result added to 
the trial G”(X) to obtain a new G”(X) with which to 
continue the iteration of equation (7a). After con- 
vergence within a small tolerance (usually 10-4), an 
P(X) was evaluated from equation (8) by using the 
old F(X) on the ~ght-hand side. An acceleration fac- 
tor (usually 1.5) was then applied to this p(X) to 
obtain a new F*(X) with which to repeat the iteration 
of equation (7a). The calculations were checked by 
reducing the size of AX; usually 40AX intervals were 
used across the layer. After convergence of the F(x) 
and G(X), the emittance was obtained from equation 
(11) in which F, was found by integrating F(x) across 
the layer. After some results were obtained, the cal- 
culations were started from approximate F(x) and 
G(X) functions. This decreased the number of iter- 
ations required which was especially helpful as the ICY 
increased in value. A larger rce increased the sensitivity 
of equation (7a) and more iterations were required to 
obtain G“(X) within a given error tolerance. 

For absorption only in the layer (a = 0), equation 
(15) was iterated by putting a trial F(x) into the right- 
hand side and applying an acceleration factor of 1.2 to 
the resulting F“(X) to obtain the next approximation. 
After convergence of P(X) to at least four decimal 
places for all X, the emittance was evaluated from 
equation (16). 

The solution procedure requires an accurate inte- 
gration technique, and since E,(O) = co, special con- 
sideration is needed as X* approaches X. Since the 
integral of E, is -E2, and &(O) = 1, the integration 
was performed analytically for a small region adjacent 
to the singularity, with F and C each held constant 
over this small region. The calculations were checked 
by reducing the size of this region to be sure its size 
had no effect. The integrations in the regions away 
from the singularity were performed with a Gaussian 
integration subroutine available in the computer 
library. Solutions generally required only a few 
minutes on an IBM 370 computer. A few cases with 
K~ = 14 required about 6min of time as a result 
of slower convergence of the iterative solution of 
equation (7a). 

Since E,+ is independent of time, the cooling 
equation (10) can be integrated from time ?, and 
Q2 to yield 

AT=?,--f, =$-(k-k). (17) 

As shown by the results in ref. [ 11, the E,,,,% applies after 
approximately 30% of the energy has been lost from 
the layer. Hence, starting with any Fm,, less than about 

0.7, the time required to reach any lower f can be 
easily obtained by use of equation (17). 

RESULTS AND DlSCUSSlON 

As described in the analysis for cases with n > 0, 
equations (7a) and (8) were solved to obtain F(X) and 
G(X), and equation (15) was solved for F(X) when 
R = 0. This was done for a range of K~ and Sz values. 
The F(X) and G(X) were in agreement with those 
obtained in the transient solution [l]. The right-hand 
sides of equations (7b) and (14) were checked to verify 
that they were independent of X. The values of E,,, 
were obtained from equations (11) and (16) and were 
found to be in agreement with the values available 
from ref. [I]. 

With the separation of variables solution thus veri- 
fied, a wide range of E,,, values were calculated ; they 
are given in Table 1 and are plotted in Fig. 2. In Fig. 
2(a) results are given as a function of ICY for various 
Q. Consider first the curve for R = 0. As the optical 
thickness is increased from zero, the emittance 
increases with K~ and reaches a maximum at rcD a little 
above 2. For larger K~, the effect of the outer regions 
of the radiating layer being cool becomes increasingly 
important and, consequently, the E,+ decreases as ICY 
is further increased. This is in contrast to the results 
for an emitting layer at uniform temperature. In this 
instance the emittance increases monotonically 
toward unity as rcD is increased. 

For n > 0 the curves in Fig. 2(a) have the same 
general trend as the curve for Q = 0. Increased scat- 
tering corresponds to lower absorption, and hence 
emission, within the layer. Hence, for a fixed tiD the 
E,,* values decrease as Q is increased. The location of 
the maximum a,,% for a fixed Q shifts to larger lcD 
values as R is increased. 

The E,., are plotted in Fig. 2(b) as a function of a 
for constant values of icn from 0.5 to 14. For a layer 
that has a fairly small optical thickness, rcD = 0.5, the 
E,,,~ decreases almost linearly as iz is increased. In the 
range of K~ = 1 and 2, the E,,, is increasing with K,, 
and, compared with results at smaller K~, the E,,, is 
decreasing somewhat more slowly with R in the region 
of small R. For optically thick layers with large K~, 
such as 10 or 14, the E,,, is almost constant with ti until 
iz reaches about 0.8 ; then there is a rapid decrease of 
E m.S toward zero as Q is further increased. This 
behavior is considerably different than the emittance 
results for a layer at constant temperature as given in 
refs. [1,2]. 

Figure 3 gives the temperature distribution during 
the ‘fully developed’ portion of the cooling transient 
analyzed here. Thef(X) defined by equation (5a) is 
given in Fig. 3(a) for three different K~ values and no 
scattering, Q = 0. The profiles are quite insensitive to 
the value of the optical thickness. Figure 3(b) shows 
the variation of f(X) with R for a fixed thickness, 
icD = 7. This reveals that thef(X) is also insensitive 
to the amount of scattering present. Thus S(X) is 
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Table 1. Values of layer emittance, E,,,(K~, a) 

963 

Optical 
thickness, 

KD 0 0.30 

Scattering albedo, R 

0.60 0.80 0.90 0.95 0.98 

1 0.772 0.662 0.489 0.304 0.173 0.093 0.039 
2 0.894 0.816 0.669 0.472 0.297 0.170 0.075 
3 0.882 0.830 0.722 0.555 0.379 0.232 0.107 
5 0.777 0.753 0.696 0.592 0.456 0.313 0.161 
7 0.672 0.659 0.627 0.563 0.468 0.351 0.200 

10 0.551 0.544 0.529 0.496 0.440 0.360 0.233 
14 0.440 0.437 0.430 0.414 0.385 0.338 0.248 

OPTICALMICKNESS, KD 

(a) 

SCATTERINGALBEDO. R 

lb) 

FIG. 2. Emittance of absorbing-s~tte~ng layer in ‘fully developed’ region : (a) emittance as a function of 
optical thickness ; (b) emittance as a function of scattering albedo. 

OPTICAL 
THICKNESS, 

KD 

SCAlTERlNC 
ALBEDO, 

1.0 7 R leoI- OPTICALTHICKNESS. 

.6 

.8 

.6 

.2 

1 
0 

I I I I 
.1 .2 .3 .4 .5 

X - K/KD 

1.0 
ALBEDO, 

R 

D-l 
.6 -I\ 

.8 

.6 

SCATTERING 

.1 .5 
X - K/KD 

(4 04 
FIG. 3. Dimensionless temperature function : (a) scattering albedo, Q = 0 ; (b) optical thickness, rcD = 7. 
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almost a universal function, as it does not vary appre- 
ciably with either rco or fi for the ranges studied here. 

In Fig. 4 the g(X) is given for various rco with 
R = 0.6; g(x) is the dimensionless profile of the one- 
quarter power of the source function as defined in 
equation (5b). These functions were also found to be 
quite insensitive to both ICY and R, and g(x) has a 
shape very close to the shape of S(x). Because the 
variation of g(X) with Q is quite small, the results for 
g(x) in Fig. 4 for 0 = 0.6 are very close to the curves 
forf(X) in Fig. 3(a) which are for Q = 0 (recall that 

OPTICAL 
THICKNESS, 

0 .l .2 .3 .a .5 
X= K/KD 

FIG. 4. Dimensionless form of one-quarter power of source 
function as a function of optical thickness with B = 0.6. 

1”‘14 + pas ti -+ 0). For each rco theg(X) for all Q were 
found to be very close to thef(X) for a = 0. 

Using the a,,, values from Fig. 2, cooling times 
during the ‘fully developed’ transient period are 
readily calculated from equation (17). As shown by 
the mean temperature results in Table 2 of ref. [l], 
this can be used after the emitting layer has lost 
approximately 30% of its energy. 
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SOLUTION AVEC SEPARATION DES VARIABLES POUR LE 
REFROIDISSEMENT RADIATIF NON LINEAIRE 

R&n&--Une solution par separation des variables a it& obtenue pour le refroidissement radiatif variable 
dune couche plane absorbante et diffusante, La solution s’obtient apres une peroide initiale transitoire 
nicessaire pour l’ajustement des distributions de temperature et de la diffusion. L’emittance de la couche, 
egale a la perte de chaleur instantante divisee par la puissance quatrieme de la temperature moyenne 
instantante, devient constante. Cette tmittance est fonction seulement de l’epaisseur optique de la couche 
et de l’albido; son comportement en fonction de ces parametres est considtrablement different de celui 

pour une couche a temperature constante. 

EINE L&SUNG DURCH TRENNUNG DER VARIABLEN 
FUR NICHTLINEARE STRAHLUNGSKUHLUNG 

Zuaammeafassung-Fiir die instationare Strahlungsktihlung einer streuend-absorbierenden, ebenen 
Schicht wurde eine L&sung durch Trennung der Variablen erhalten. Die Losung gilt nach einer anfdng- 
lichen instat~on~ren Periode, die fur das Erreichen der station~ren Temperatur- und Streufunktionsver- 
teihmgen notwendig ist. Die Emission der Schicht, die 8leich dem Quotient aus dem momentanen W&me- 
verlust under der vierten Potenz der augenblicklichen Temperatur ist, wird konstant. Diese Emission ist 
nur von der optischen Dicke der Schicht und der Streuungsalbedo abhangig. Das Emissionsverhalten 
als Funktion dieser Gr6Ren unterscheidet sich betriichtlich von dem einer Schicht mit konstanter 

Temperatur. 
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PElIIEHkfE METOJJOM PA3,QEJIEHMII I’IEPEMEHHbIX 3A&4YM HJZJIFiHE~HOI-0 
PAflMALJHOHHOl-0 OXJLUKQEHWI 

,&mwmm-Me~ono~ pamenema nepeMemmx nonyqeao peweme WWIH HecTawoHapHoro panxa- 
~omoro oxnaw3eHm nornoUIIiK)~ero-pacceCceHBaIOIUer0 nnocKor0 cnon. Pemetnie cnpaBeanHB0 nocne 
Hawnbnoro nepexoworo nepao.na, neo6xonnMoro JUIS cornacoaannn pacnpeneneenn TeMnepaTypbl H 
~yHm5i HcToYHHKa paccenam. MsnyraTeJlbHaa ctfoco6eoc’rb cnoa, pasliar MI’WOBeHiiO~ IloTepe Tenna, 
o~wmi~ofi K MrwoBemoir cpemie& TebfnepaTypc B wraep-roii crenem, CratxoBmcn nocroneeo~. %a 
myqaTenbtIaa cmco6~omb BWII~TTCR aymxme& TOJI~KO onTmecKoi9 ToniimtM cnox H anb6eSo pac- 
cesmis; ee oo~=e~e Kay @ymcwir 3T5ix aemiwn ~~~~0 0mmaeTcn 01 noaexems ivoI cnoB 
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